
Summary

Acknowledgements

What is RAPIDS? Channel API

RAPIDS Channel API: Improved Persistent Communication
Riley Shipley1 Anthony Skjellum1 Purushotham Bangalore2 Patrick Bridges3 | 1Tennessee Tech; 2U. of Alabama; 3U. of New Mexico

RAPIDS (Reduced API Data-transfer Specifications) addresses the

following key issues present in existing communication libraries:

• Performance: General-purpose libraries sacrifice performance to

offer semantics and capabilities to suit many applications

• Progress: Catering to a wide audience makes innovation in these

libraries untenable

• Pace: Even widely agreed upon changes are outpaced by other parts

of industry

By dividing functionality from existing models into separate but

composable APIs, RAPIDS will provide more performant alternatives for

existing models and a venue for innovative new approaches.

Center for Understandable

Performant Exascale

Communication Systems

Low-Level
APIs

High-Level
Libraries

Easy to use

Limited
optimization

Slow to change

Highly efficient

Flexible

Difficult to learn

No abstraction

Development Timeline
Below are currently planned RAPIDS APIs in the order they will be developed.

RAPIDS combines the best parts of high-level libraries and low-level APIs

The RAPIDS initiative seeks to

deliver innovative and performant

communication APIs. The first of

these is the Channel API, improving

persistent communication by

implementing it via RMA and

allowing remote buffers to be

segmented to fit user needs.

This work was performed with partial
support from the National Science
Foundation under Grants Nos. CCF-
2405142 and CCF-2412182, the U.S.
Department of Energy’s National
Nuclear Security Administration
(NNSA) under the Predictive Science
Academic Alliance Program (PSAAP-
III), Award DE-NA0003966, and
Tennessee Technological University.
Any opinions, findings, and
conclusions or recommendations
expressed in this material are those
of the author(s) and do not
necessarily reflect the views of the
National Science Foundation or the
DOE NNSA.

RAPIDS
Focused APIs

Easy to use

Highly efficient

Room for innovation

Channel

RMA with
segmentable buffers

GrabBag

Always take first
available message

Concurrency

GPU / multi-core
friendly partitioning

Concurrent
Channel

GPU-friendly RMA

MPI Persistence ModelChannel Persistence Model

The Channel API offers a streamlined persistent communication model

implemented using RMA to move data directly, eliminating the need for a

matching queue on the receiving process.

One of the most important features of the Channel model is that the

remote buffer it creates is segmentable, meaning that users have complete

freedom in how much of the remote buffer they use. This allows for

multiple messages to be written to different buffer segments without

needing to synchronize with the remote process, as seen below.

// Write to segment starting at offset
SendChannel::i_put(offset, count);

// Wait for segment write to complete
SendChannel::wait(offset, count);

// Wait for incoming segment at offset
RecvChannel::wait(offset, count);

// Give write access to sender
RecvChannel::release(offset, count);

Core Channel functions

Current Challenges to
Inter-Node Communication

Highlights and Conclusions References

Acknowledgements

Introduction Methods

Enabling Performant Inter-Node Communication for Kokkos Views
C. Nicole Avans¹², Carl Pearson¹, Jan Ciesko¹, Evan Suggs², Stephen L. Olivier¹, Anthony Skjellum²

¹Sandia National Laboratories, ²Tennessee Technological University

● Programming with non-contiguous
data in MPI typically requires a
serialization strategy using data
repacking or MPI Datatypes

● Platform-specific optimization for
processors and interconnects
presents undue burden to scalable
application developers

● Heterogeneous architectures
complicate data exchange and reduce
performance-portability

● Implemented a Channel object that manages
half-duplex persistent and single-partition partitioned
point-to-point communication in Kokkos Comm, to be
expanded upon

● Added explicit HIP support to Kokkos Comm, to
complement existing CUDA support

● Kokkos Comm has been fully instrumented for use
with Kokkos Tools, enabling rapid identification of
performance bottlenecks and the ability to trace
program behavior

1. Reference A
2. Reference B
3. Reference C
4. And so on!
5. (You can shrink this text area if needed)

This project wishes to acknowledge the fruitful collaboration
with our colleagues at Université Paris-Saclay: Gabriel Dos
Santos, Cédric Chevalier, Hugo Taboada, and Marc
Pérache.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security
Administration under contract DE-NA003525.

This work was performed with partial support from the
National Science Foundation under Grants 2405142 and
2412182, and the U.S.. Department of Energy’s National
Nuclear Security Administration (NNSA) under the
Predictive Science Academic Alliance Program (PSAAP-III),
Award DE-NA0003966.

● The Kokkos Comm library introduces a new communication interface integrated with
Kokkos Views

● A unified performance-portable ecosystem for on- and off-node parallel programming
● Kokkos Comm optimizes movement of data by abstracting implementation-specific details

and marshaling and unmarshaling of data away from the end-user programmer

● Experiments were executed
to optimize performance and
identify bottlenecks on
multiple nodes of SNL
Weaver (NVIDIA Tesla
V100) and LLNL Tioga (AMD
MI250X)

● Packing method
performance, latency, and
real-time of execution were
measured via a Heat3D
miniapp and standard OSU
benchmarks

Center for Understandable
Performant Exascale
Communication Systems

MPI Persistence MPI Partitioned

MPI RMA Inside

Stream-Triggered libfabric

Planned Development Roadmap

Design for Performance, Portability, and Productivity
● Enable the fastest path for data to move without changing the program
● Provide intuitive support for neighbor collectives by managing data as subviews
● Native multi-transport communication support for performance and portability without

reducing productivity

Addressing Challenges
● Serialization and deserialization is

managed and abstracted into two
supported types: Deep Copy, and MPI
Datatype

● GPU memory space communication is
supported based on Kokkos enabled
backends (e.g., CUDA, HIP)

Future Opportunities
● Enhance support to include arbitrary Kokkos View

types and mdspan
● Add new communication space backends (e.g.,

NCCL) to extend Kokkos Comm beyond MPI-based
communication for higher performance

● Add support for stream-triggered communication and
libfabric to enable optimizations for system-specific
performance via interface with external libraries
Cabana and RAPIDS

Optimized RMA-based MPI_Alltoallv Operations
Evelyn Namugwanya1, Amanda Bienz2, Matthew Dosanjh3, Anthony Skjellum1 | 1TN TECH, 2UNM, 3SANDIA

Message size = 33,554,432 bytes

Center for Understandable

Performant Exascale

Communication Systems

Conclusions
• The default MPI_Alltoallv offers strong
performance on small process counts.
• RMA variants, especially with fine-grained locking,
scale better with more nodes and process count.
• This can be attributed to its flexibility as
compared to MPI_Win_fence.
• Future work includes Persistent RMA_Alltoallv
and OpenSHMEM instead of MPI RMA.

Weak Scaling Results

For all graphs, low bars mean less

time taken and high bars mean more

time taken (in seconds)

Introduction

The MPI_Alltoallv operation is critical in scientific workloads involving
irregular communication. RMA (Remote Memory Access) promises
asynchronous, one-sided communication, and could out-perform
message-based implementations of collective operations that are
specified in the MPI Standard.

The goal is to design and develop more efficient and faster RMA-based
Alltoallv operations and compare them with traditional MPI_ Alltoallv
against MPI-Advance’s two RMA variants over a range of scalability.

This poster compares the performance of three RMA_Alltoallv
implementations: the default MPI implementation of MPI_Alltoallv, MPI-
Advance’s RMA-based Alltoallv with MPI_Win_fence, and RMA-based
Alltoallv with MPI_Win_lock.

Experiments were conducted on 2, 4, and 8-node configurations using
LLNL’s Dane and Lassen HPC Supercomputers.

Algorithms developed and Compared
•MPI_Alltoallv:
Standard MPI implementation.
• RMA_winfence:
Uses MPI_Win_fence for synchronization.
• RMA_winlock:
Uses MPI_Win_lock/MPI_Win_unlock for finer-grained control.
Uses MPI_Win_flush for completions.

Results
• The default MPI implementation performs better on two nodes, but

the advantage narrows as nodes and processes increase.
• RMA_Winlock is consistently slightly faster than RMA_Winfence.

Insights
• RMA approaches reduce overhead in large
process counts and large messages but not
on fewer nodes.
• Synchronization method matters: winlock
outperforms fence marginally.

Acknowledgements

This work was performed with partial support from the National
Science Foundation under Grants Nos. 2405142 and 2412182 and the
U.S. Department of Energy's National Nuclear Security Administration
(NNSA) under the Predictive Science Academic Alliance Program
(PSAAP-III), Award DE-NA0003966.

The optimization of the Allreduce collective operation relies on multiple MPI ranks being launched by the

scheduler per GPU. After the send and receive buffers are allocated per GPU, all ranks associated with each

GPU are given a pointer to the buffer using the CUDA IPC API; a root process per GPU passes the buffer to

cudaIpcGetMemHandle to get a handle to broadcast to share the buffer with its on-node ranks, then these

ranks retrieve the pointer with cudaIpcOpenMemHandle.

Then, as seen below, the reduction proceeds in a lane-aware manner [1]. A Reduce scatter first divides each

buffer into chunks equal to the number of ranks per node, reducing the chunk size associated with each rank

per GPU on a node. Then, an inter-node Allreduce occurs to ensure all ranks on every node have a completely

reduced chunk of the solution. Finally, the chunks on a node are assembled into the solution with an Allgatherv.

It should be noted that displacements relative to the start of the buffer are used by each GPU’s ranks in order to

ensure each rank stays within bounds of its chunk to allow synchronization to be ignored.

GPU

RAM

Results Conclusions

ReferencesAcknowledgements

Background Methods

GPU Allreduce using Interprocess Communication
Michael Adams and Amanda Bienz | Department of Computer Science

Speedup for large buffer sizes using 2 to 16 ranks per GPU

is seen on two, four, and eight nodes of NCSA Delta where

each node has 4 NVIDIA A100 and 64 AMD EPYC CPU

cores. Careful consideration of rank placement evenly

throughout all NUMA nodes (one per GPU) provided initial

validation.

Further validation on additional systems such as PSC

Bridges-2 and Purdue Anvil is needed. Scaling studies will

be performed to show applicability to scientific and deep

learning problems.

1. J. L. Traff and S. Hunold, Decomposing mpi collectives for exploiting multi-lane communication, 2020 IEEE International Conference on Cluster

Computing (CLUSTER), (2020)

2. T. T. Nguyen, M. Wahib and R. Takano, Topology-aware Sparse Allreduce for Large-scale Deep Learning, 2019 IEEE 38th International

Performance Computing and Communications Conference (IPCCC), (2019)

We would like to thank the UNM Center for Advanced Research Computing, supported in part by the National Science Foundation, for providing the research computing

resources used in this work.

In addition, we would like to thank the PSAAP program, funded in part by the United States Department of Energy, for accces to the Lassen, Tioga, and Chicoma platforms

used in this work.

Finally, we would like to thank the NSF Access program for access to NCSA Delta, Purdue Anvil, and PSC Bridges-2

Applications such as deep neural

netwiork training rely on the Allreduce

operation for data communication and use

GPUs for efficient linear algebra

implementations. In deep neural network

training, the Allreduce is used to average

the backpropagation gradients across all

GPUs.

It is noted, however, that communication

is dependent on the CPU and network

configuration of the system, even in the

GPUDirect RDMA case. Thus, we

propose to take advantage of growing

core counts on supercomputers, such as

NCSA Delta, with a lane-aware approach

[1] to utilize all cores during

communication via CUDA Interprocess

Communication to yield further speedup.

GPU

RAM

GPU

RAM

GPU

RAM

GPU #1

GPU #2

GPU #1

GPU #2

+

+

+

+

+

+

+

+

Multi-core

cudaIpcGetMemHandle

MPI_Bcast

+

cudaIpcOpenMemHandle
MPI_Reduce_scatter

+

+

+

+

+

+

+

+

Allreduce

+

+

+

+

+

+

+

+

MPI_Allgatherv

16 processes per GPU, max size speedup: 1.29x 1.23x 1.23x

The optimization of the Allreduce collective operation relies on multiple MPI ranks being launched by the

scheduler per GPU. After the send and receive buffers are allocated per GPU, all ranks associated with each

GPU are given a pointer to the buffer using the CUDA IPC API; a root process per GPU passes the buffer to

cudaIpcGetMemHandle to get a handle to broadcast to share the buffer with its on-node ranks, then these

ranks retrieve the pointer with cudaIpcOpenMemHandle.

Then, as seen below, the reduction proceeds in a lane-aware manner [1]. A Reduce scatter first divides each

buffer into chunks equal to the number of ranks per node, reducing the chunk size associated with each rank

per GPU on a node. Then, an inter-node Allreduce occurs to ensure all ranks on every node have a completely

reduced chunk of the solution. Finally, the chunks on a node are assembled into the solution with an Allgatherv.

It should be noted that displacements relative to the start of the buffer are used by each GPU’s ranks in order to

ensure each rank stays within bounds of its chunk to allow synchronization to be ignored.

GPU

RAM

Results Conclusions

ReferencesAcknowledgements

Background Methods

GPU Allreduce using Interprocess Communication
Michael Adams and Amanda Bienz | Department of Computer Science

Speedup for large buffer sizes using 2 to 16 ranks per GPU

is seen on two, four, and eight nodes of NCSA Delta where

each node has 4 NVIDIA A100 and 64 AMD EPYC CPU

cores. Careful consideration of rank placement evenly

throughout all NUMA nodes (one per GPU) provided initial

validation.

Further validation on additional systems such as PSC

Bridges-2 and Purdue Anvil is needed. Scaling studies will

be performed to show applicability to scientific and deep

learning problems.

1. J. L. Traff and S. Hunold, Decomposing mpi collectives for exploiting multi-lane communication, 2020 IEEE International Conference on Cluster

Computing (CLUSTER), (2020)

2. T. T. Nguyen, M. Wahib and R. Takano, Topology-aware Sparse Allreduce for Large-scale Deep Learning, 2019 IEEE 38th International

Performance Computing and Communications Conference (IPCCC), (2019)

We would like to thank the UNM Center for Advanced Research Computing, supported in part by the National Science Foundation, for providing the research computing

resources used in this work.

In addition, we would like to thank the PSAAP program, funded in part by the United States Department of Energy, for accces to the Lassen, Tioga, and Chicoma platforms

used in this work.

Finally, we would like to thank the NSF Access program for access to NCSA Delta, Purdue Anvil, and PSC Bridges-2

Applications such as deep neural

netwiork training rely on the Allreduce

operation for data communication and use

GPUs for efficient linear algebra

implementations. In deep neural network

training, the Allreduce is used to average

the backpropagation gradients across all

GPUs.

It is noted, however, that communication

is dependent on the CPU and network

configuration of the system, even in the

GPUDirect RDMA case. Thus, we

propose to take advantage of growing

core counts on supercomputers, such as

NCSA Delta, with a lane-aware approach

[1] to utilize all cores during

communication via CUDA Interprocess

Communication to yield further speedup.

GPU

RAM

GPU

RAM

GPU

RAM

GPU #1

GPU #2

GPU #1

GPU #2

+

+

+

+

+

+

+

+

Multi-core

cudaIpcGetMemHandle

MPI_Bcast

+

cudaIpcOpenMemHandle
MPI_Reduce_scatter

+

+

+

+

+

+

+

+

Allreduce

+

+

+

+

+

+

+

+

MPI_Allgatherv

16 processes per GPU, max size speedup: 1.29x 1.23x 1.23x

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Controlled by:

ANALYZING ALLTOALL ALGORITHMS ON MANY-CORE SYSTEMS

Sandia National Laboratories

Shannon Kinkead (Sandia National Laboratories, University of New Mexico)
In collaboration with: Amanda Bienz (University of New Mexico)

Results

References: N. Netterville, K. Fan, S. Kumar, and T. Gilray, “A visual guide to MPI all-to-all,” in 2022 IEEE 29th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). IEEE, 2022, pp. 20–27.

Acknowledgements: This work was performed with partial support from NSF CCF-2151022, NSF CCF-2338077, DOE NNSA DE-NA0003966, and Sandia. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Introduction

Methods

Alltoall algorithms

• Critical to matrix operations and machine learning
• Each process sends a portion of its data to every other process
• Multiple algorithms
• Performance depends on data size, process count, architecture,

synchronization requirements, etc.

Alltoall

Algorithms

• 8 Alltoall algorithms compared
• System MPI
• Pairwise Exchange (uses MPI send/recv in pairs)
• Nonblocking (uses MPI isend/irecv/waitall)
• Hierarchical (algorithm 2, local comm is all ranks on node)
• Multileader (algorithm 2, local comm is a group within the

node)
• Node Aware (algorithm 3, local comm is all ranks on node)
• Locality Aware (algorithm 3, local com is a group within a

node)
• Multileader Locality Aware (multileader, replaces MPI

alltoall with node aware)
• 3 HPC Systems
• Amber (Sandia National Laboratories)
• Dane (Lawrence Livermore National Laboratory)
• Tachi (Sandia National Laboratories)

• 2 - 32 Nodes
• Message sizes from 4 bytes to 2 kb

Amber

Dane

Tachi

32 nodes, message scaling from 4b to 2 kb 32 nodes, message scaling from 4b to 2
kb, scaling leaders per node

4b message, scaling nodes from 2 - 32 2kb message, scaling nodes from 2 - 32

32 nodes, message scaling from 4b to 2 kb 32 nodes, message scaling from 4b to 2 kb

Hierarchical
• Aggregates all data to be sent by each process to leader of local communicator
• Exchanges the data to be sent to other local communicators to group

communicator
• Scatters data from other processes to local communicator
• Data is repacked between each communication step

Hierarchical Alltoall algorithm

• Exchanges all data for processes outside group communicator within the group
communicator

• Exchanges all data within a region in the local communicator
• Data is repacked between each communication step

Locality-Aware

Locality-Aware Alltoall algorithm

SAND2025-05968O

	Shipley_2025
	Slide 1

	Suggs_2025
	Avans_2025
	Namugwanya_2025
	AdamsBienz_52025_CUP-ECS-branded-Poster templates-48x36inALL
	Slide 1

	AdamsBienz_52025_CUP-ECS-branded-Poster templates-48x36inALL
	Slide 1

	AlltoallMultiscale.pptx

