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What is RAPIDS? Channel API

RAPIDS Channel API: Improved Persistent Communication
Riley Shipley1 Anthony Skjellum1 Purushotham Bangalore2 Patrick Bridges3 | 1Tennessee Tech; 2U. of Alabama; 3U. of New Mexico

RAPIDS (Reduced API Data-transfer Specifications) addresses the 

following key issues present in existing communication libraries:

• Performance: General-purpose libraries sacrifice performance to 

offer semantics and capabilities to suit many applications

• Progress: Catering to a wide audience makes innovation in these 

libraries untenable

• Pace: Even widely agreed upon changes are outpaced by other parts 

of industry

By dividing functionality from existing models into separate but 

composable APIs, RAPIDS will provide more performant alternatives for 

existing models and a venue for innovative new approaches.
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Development Timeline
Below are currently planned RAPIDS APIs in the order they will be developed.

RAPIDS combines the best parts of high-level libraries and low-level APIs

The RAPIDS initiative seeks to 

deliver innovative and performant 

communication APIs. The first of 

these is the Channel API, improving 

persistent communication by 

implementing it via RMA and 

allowing remote buffers to be 

segmented to fit user needs.
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The Channel API offers a streamlined persistent communication model 

implemented using RMA to move data directly, eliminating the need for a 

matching queue on the receiving process.

One of the most important features of the Channel model is that the 

remote buffer it creates is segmentable, meaning that users have complete 

freedom in how much of the remote buffer they use. This allows for 

multiple messages to be written to different buffer segments without 

needing to synchronize with the remote process, as seen below.

// Write to segment starting at offset
SendChannel::i_put(offset, count);

// Wait for segment write to complete
SendChannel::wait(offset, count);

// Wait for incoming segment at offset
RecvChannel::wait(offset, count);

// Give write access to sender
RecvChannel::release(offset, count);

Core Channel functions
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Enabling Performant Inter-Node Communication for Kokkos Views
C. Nicole Avans¹², Carl Pearson¹, Jan Ciesko¹, Evan Suggs², Stephen L. Olivier¹, Anthony Skjellum²

¹Sandia National Laboratories, ²Tennessee Technological University

● Programming with non-contiguous 
data in MPI typically requires a 
serialization strategy using data 
repacking or MPI Datatypes

● Platform-specific optimization for 
processors and interconnects 
presents undue burden to scalable 
application developers

● Heterogeneous architectures 
complicate data exchange and reduce 
performance-portability

● Implemented a Channel object that manages 
half-duplex persistent and single-partition partitioned 
point-to-point communication in Kokkos Comm, to be 
expanded upon

● Added explicit HIP support to Kokkos Comm, to 
complement existing CUDA support

● Kokkos Comm has been fully instrumented for use 
with Kokkos Tools, enabling rapid identification of 
performance bottlenecks and the ability to trace 
program behavior

1. Reference A
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4. And so on!
5. (You can shrink this text area if needed)
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● The Kokkos Comm library introduces a new communication interface integrated with 
Kokkos Views

● A unified performance-portable ecosystem for on- and off-node parallel programming
● Kokkos Comm optimizes movement of data by abstracting implementation-specific details 

and marshaling and unmarshaling of data away from the end-user programmer

● Experiments were executed 
to optimize performance and 
identify bottlenecks on 
multiple nodes of SNL 
Weaver (NVIDIA Tesla 
V100) and LLNL Tioga (AMD 
MI250X)

● Packing method 
performance, latency, and 
real-time of execution were 
measured via a Heat3D 
miniapp and standard OSU 
benchmarks
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Planned Development Roadmap

Design for Performance, Portability, and Productivity
● Enable the fastest path for data to move without changing the program
● Provide intuitive support for neighbor collectives by managing data as subviews
● Native multi-transport communication support for performance and portability without 

reducing productivity

Addressing Challenges
● Serialization and deserialization is 

managed and abstracted into two 
supported types: Deep Copy, and MPI 
Datatype

● GPU memory space communication is 
supported based on Kokkos enabled 
backends (e.g., CUDA, HIP)

Future Opportunities
● Enhance support to include arbitrary Kokkos View 

types and mdspan
● Add new communication space backends (e.g., 

NCCL) to extend Kokkos Comm beyond MPI-based 
communication for higher performance

● Add support for stream-triggered communication and 
libfabric to enable optimizations for system-specific 
performance via interface with external libraries 
Cabana and RAPIDS



Optimized RMA-based MPI_Alltoallv Operations
Evelyn Namugwanya1, Amanda Bienz2, Matthew Dosanjh3, Anthony Skjellum1 | 1TN TECH, 2UNM, 3SANDIA

Message size = 33,554,432 bytes 
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Conclusions
• The default MPI_Alltoallv offers strong 
performance on small process counts.
• RMA variants, especially with fine-grained locking, 
scale better with more nodes and  process count. 
• This can be attributed to its  flexibility as 
compared to MPI_Win_fence.
• Future work includes Persistent RMA_Alltoallv
and OpenSHMEM instead of MPI RMA.

Weak Scaling Results

For all graphs, low bars mean less 

time taken and high bars mean more 

time taken (in seconds)

Introduction

The MPI_Alltoallv operation is critical in scientific workloads involving 
irregular communication. RMA (Remote Memory Access) promises 
asynchronous, one-sided communication, and could out-perform 
message-based implementations of collective operations that are 
specified in the MPI Standard. 

The goal is to design and develop more efficient and faster RMA-based 
Alltoallv operations and compare them with traditional MPI_ Alltoallv
against MPI-Advance’s two RMA variants over a range of scalability.

This poster  compares the performance  of three RMA_Alltoallv
implementations: the default MPI implementation  of MPI_Alltoallv, MPI-
Advance’s RMA-based Alltoallv with MPI_Win_fence, and RMA-based 
Alltoallv with MPI_Win_lock. 

Experiments were conducted on 2, 4, and 8-node configurations using 
LLNL’s Dane and Lassen HPC Supercomputers. 

Algorithms developed and Compared
•MPI_Alltoallv:
Standard MPI implementation.
• RMA_winfence:
Uses MPI_Win_fence for synchronization.
• RMA_winlock: 
Uses MPI_Win_lock/MPI_Win_unlock for finer-grained control. 
Uses MPI_Win_flush for completions.

Results
• The default MPI implementation performs better on two nodes, but 

the advantage narrows as nodes and processes increase.
• RMA_Winlock is consistently slightly faster than RMA_Winfence.

Insights
• RMA approaches reduce overhead in large 
process counts and large messages but not 
on fewer nodes.
• Synchronization method matters: winlock
outperforms fence marginally.
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The optimization of the Allreduce collective operation relies on multiple MPI ranks being launched by the 

scheduler per GPU.  After the send and receive buffers are allocated per GPU, all ranks associated with each 

GPU are given a pointer to the buffer using the CUDA IPC API; a root process per GPU passes the buffer to 

cudaIpcGetMemHandle to get a handle to broadcast to share the buffer with its on-node ranks, then these 

ranks retrieve the pointer with cudaIpcOpenMemHandle.

Then, as seen below, the reduction proceeds in a lane-aware manner [1].  A Reduce scatter first divides each 

buffer into chunks equal to the number of ranks per node, reducing the chunk size associated with each rank 

per GPU on a node. Then, an inter-node Allreduce occurs to ensure all ranks on every node have a completely 

reduced chunk of the solution. Finally, the chunks on a node are assembled into the solution with an Allgatherv. 

It should be noted that displacements relative to the start of the buffer are used by each GPU’s ranks in order to 

ensure each rank stays within bounds of its chunk to allow synchronization to be ignored.

GPU

RAM

Results Conclusions
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Background Methods

GPU Allreduce using Interprocess Communication
Michael Adams and Amanda Bienz | Department of Computer Science

Speedup for large buffer sizes using 2 to 16 ranks per GPU 

is seen on two, four, and eight nodes of NCSA Delta where 

each node has 4 NVIDIA A100 and 64 AMD EPYC CPU 

cores. Careful consideration of rank placement evenly 

throughout all NUMA nodes (one per GPU) provided initial 

validation.

Further validation on additional systems such as PSC 

Bridges-2 and Purdue Anvil is needed.  Scaling studies will 

be performed to show applicability to scientific and deep 

learning problems.
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Applications such as deep neural 

netwiork training rely on the Allreduce 

operation for data communication and use 

GPUs for efficient linear algebra 

implementations.  In deep neural network 

training, the Allreduce is used to average 

the backpropagation gradients across all 

GPUs.

It is noted, however, that communication 

is dependent on the CPU and network 

configuration of the system, even in the 

GPUDirect RDMA case.  Thus, we 

propose to take advantage of growing 

core counts on supercomputers, such as 

NCSA Delta, with a lane-aware approach 

[1] to utilize all cores during 

communication via CUDA Interprocess 

Communication to yield further speedup.
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16 processes per GPU, max size speedup:                                                1.29x                                                                1.23x                      1.23x
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Introduction

Methods

Alltoall algorithms

• Critical to matrix operations and machine learning
• Each process sends a portion of its data to every other process
• Multiple algorithms
• Performance depends on data size, process count, architecture, 

synchronization requirements, etc.

Alltoall

Algorithms

• 8 Alltoall algorithms compared
• System MPI
• Pairwise Exchange (uses MPI send/recv in pairs)
• Nonblocking (uses MPI isend/irecv/waitall)
• Hierarchical (algorithm 2, local comm is all ranks on node)
• Multileader (algorithm 2, local comm is a group within the 

node)
• Node Aware (algorithm 3, local comm is all ranks on node)
• Locality Aware (algorithm 3, local com is a group within a 

node)
• Multileader Locality Aware (multileader, replaces MPI 

alltoall with node aware)
• 3 HPC Systems
• Amber (Sandia National Laboratories)
• Dane (Lawrence Livermore National Laboratory)
• Tachi (Sandia National Laboratories)

• 2 - 32 Nodes
• Message sizes from 4 bytes to 2 kb

Amber

Dane

Tachi

32 nodes, message scaling from 4b to 2 kb 32 nodes, message scaling from 4b to 2 
kb, scaling leaders per node

4b message, scaling nodes from 2 - 32 2kb message, scaling nodes from 2 - 32

32 nodes, message scaling from 4b to 2 kb 32 nodes, message scaling from 4b to 2 kb

Hierarchical
• Aggregates all data to be sent by each process to leader of local communicator
• Exchanges the data to be sent to other local communicators to group 

communicator
• Scatters data from other processes to local communicator
• Data is repacked between each communication step

Hierarchical Alltoall algorithm

• Exchanges all data for processes outside group communicator within the group 
communicator

• Exchanges all data within a region in the local communicator
• Data is repacked between each communication step

Locality-Aware

Locality-Aware Alltoall algorithm

SAND2025-05968O
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