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What Is RAPIDS?

RAPIDS (Reduced API Data-transfer Specifications) addresses the
following key Issues present in existing communication libraries:
* Performance: General-purpose libraries sacrifice performance to
offer semantics and capabilities to suit many applications
* Progress: Catering to a wide audience makes innovation in these
libraries untenable
» Pace: Even widely agreed upon changes are outpaced by other parts
of industry
By dividing functionality from existing models into separate but
composable APIs, RAPIDS will provide more performant alternatives for
existing models and a venue for innovative new approaches.

High-Level
Libraries

Low-Level
RAPIDS APlIs

Focused APlIs
Easy to use
Highly efficient
Room for innovation

Highly efficient
Flexible
Difficult to learn
No abstraction

Easy to use

Limited
optimization

Slow to change

RAPIDS combines the best parts of high-level libraries and low-level APIs

Development Timeline

Below are currently planned RAPIDS APIs In the order they will be developed.

Channel
RMA with

GrabBag

Always take first
avallable message

segmentable buffers

Channel API

The Channel API offers a streamlined persistent communication model
Implemented using RMA to move data directly, eliminating the need for a

matching queue on the recelving process.

One of the most important features of the Channel model is that the
remote buffer It creates Is segmentable, meaning that users have complete

// Write to segment starting at offset

SendChannel::i put(offset, count);

// Wait for segment write to complete

SendChannel: :wait(offset, count);

freedom In how much of the remote buffer they use. This allows for

multiple messages to be written to different buffer segments without
needing to synchronize with the remote process, as seen below.
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GPU-friendly RMA

// Wait for incoming segment at offset
RecvChannel: :wait(offset, count);

// Give write access to sender
RecvChannel: :release(offset, count);

Core Channel functions

Summary

The RAPIDS initiative seeks to
deliver innovative and performant
communication APIs. The first of
these is the Channel API, improving
persistent communication by
Implementing it via RMA and
allowing remote buffers to be
segmented to fit user needs.
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Background void Distributor::Distributor(ExecutionSpace &e) Methods
{
// Create non-blocking send and receive operations . . . .
e We have previously surveyed various stream-triggered MPI interfaces. They are for (int n = 0; n < nunn; ++n ) o The MPI Advance stream-triggering library works with
currently implemented by several vendors via separate and incompatible APIs st wcvusabview: = Kolios posubvisn frecviiuibe, recyBoundsly CUDA, CXI, and default thread implementations.
across many different GPUs and backends in often mutually incompatible ways. e ety soneoene 1 @ Ahalo exchange shares data between MPI processes that are
o CUP-ECS’s MPI Advance stream-triggering library works with several backends HPL_Send_init( sepd_subview.data(), send_subview.size(), ..., nearby, forming an overlapping halo over a submatrix using
. L ) .
(CUDA, CXI, etc) to create a portable interface for stream triggering /1 Pair up send/recy buffers, create a queue for starts and waits scatter and gather functions.
. q 2 o 19 9 _Matchall (halo_ops.d , halo_ops.si ; 1 1 i
e We are in the process of integrating this library as a backend in Cabana and e e e e . WE Creited 2;1 blran? of Caﬁagalrvltsh a VerHSloln Oi the g;ld
CUP-ECS’s CabanaGhost benchmark suite: ) subpackage halo object called the StreamHalo object that
o Cabana is a performance-portable particle simulation library built on Kokkos void Distributor::distributeData(AoSOA_t& src, AoSoA_tg dst) front-loads the initialization of Send/Recvs, uses enqueue
. . ‘ . P
WIth an Optlonal MPI baCkend~ // All operations are enqueued to the stream, which enqueue Varlants Of S'CEU.Ter anl? ga;her’ Z’nd l"lses S‘i’ll‘eanl(;rl%g'erlng S
N // them to the progress engine associated with the queue ueue unctlon tO schedule an Walt Ont e underlvin
o CabanaGhost is a bulk synchronous parallel regular mesh benchmark for TR e ST (it Feta g, WEAL. g Tis q Myt ying
teaching and exploring parallel and performance portable frameworks, Kokkos : : parallel_for (pack_buffer_func, src, send_buffer ); communication.
.o . . 5 . MPIX_Enqueue_startall (queue, halo_ops.data() + num_n, num_n); . . .
consisting of implementations of the Game of Life and the Jacobi method. MPIX_EnquEtie. WaitallCaueue) ® Once this was done, we refactored Jacobi and Game of Life
. Kokkos::parallel_for( unpack_recv_func, dst, rcev_buffer); to utilize the enqueuescatter and enqueueGather.

e The code snippet shows an idealized interface for
stream-triggered MPI that does not break current MPI
Results semantics, so current programs remain valid.

Jacobi time in seconds for Hopper

Conclusions and Future Work

8 e Conclusions
o This project successfully integrated MPI Advance
stream-triggering with Cabana and CabanaGhost on
Hopper
o The results are promising but some issues remain with
memory on Hopper
o Future Work
o Stream-triggered CabanaGhost working with CXI on the
Tioga system and CUDA on Hopper in the near-future

. 0 o involves creating similar work for the creation of a
128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 4 8 16 2

Message Sice (bytes) size of n for n*n grid Kokkos-level stream-triggered interface and further
experiments with MPI stream-triggering

o Port into the KokkosComm library to enhance
MPI+Kokkos integration

o

Bandwidth (GB/s)

&

Time in seconds
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e The first graph is a packing ping-pong with the MPI API on the HPE CXI Libfabric that integrates Cabana and Kokkos mini-apps on LLNL’s
Tioga system.
e The second uses versions of CabanaGhost and Cabana integrated with the MPI Advance stream-triggering library on the UNM Hopper condo

cluster.
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IntrOdUCtlon MethOdS Heat3D Comparison: MPI vs KokkosComm Packing Methods
. . . : . . . . ' — —— rory = MPI l
e The Kokkos Comm library introduces a new communication interface integrated with o Exper_lm_ents DU 160.0 ms [|-Eioblem Size: Kokdos::view<doublen=»(200,200. 2000 mm KokkosComm Deep Copy
Kokkos Views to optimize performance and soomel R P e Lt i
.. - identif ttlenecks on | L3220 o8 128.4 ms128.0 ms130.0 ms
e A unified performance-portable ecosystem for on- and off-node parallel programming de Hy oottlenecks o B 1900 me | T
o - | - | multiple nodes of SNL =
e Kokkos Comm optimizes movement of data by abstracting implementation-specific detalils Weaver (NVIDIA Tesla E 100.0 ms TS BT
. . . i MPI: 23.89 us
and marshaling and unmarshaling of data away from the end-user programmer V100) and LLNL Tioga (AMD§ | | o sokkasComun Decp Cony 2600 us) |
: - . . MI250X) 9
0 e I R ——
Design for Performance, Portability, and Productivity e Packing method £ nlnle A1 ale
e Enable the fastest path for data to move without changing the program performance, latency, and 400ms | [ S < - 3 5 S
e Provide intuitive support for neighbor collectives by managing data as subviews real-tlmedof execl_tljtlop?)\lljvere 200ms | [N 8 : : : g il
measured via a Hea 316 | E 1 6 | E
e Native multi-transport communication support for performance and portability without miniapp and standard OSU G e,  [Glen [ MERIAL, 3 Miosiae, 3 Rewigfierte | SEMIA 3 Kot & BarikSentes | £T1054
. o Configuration
reducing productivity Planned Development Roadmap benchmarks
N N N N N = N
y - ;) 4 T . Send/Recv Benchmark Comparison
MPI Persistence MPI Partitioned MPI RMA Inside Stream-Triggered libfabric nghllghts and COhClUSIonS Results obtained on Tioga using AMD MI-250X GPUs|
» 800 ns e i
Lat C ison: MPI vs KokkosC SERIAL . «
Current Challenges to 28 ms [ e pareont TS Foltostomin | SERA e Implemented a Channel object that manages £ 700 ns [ 678,00
Inter-Node Communication .... . oo I I I half-duplex persistent and single-partition partitioned 5 6o0ns |- N —
. . . T WP sonay e | R R L B e e e S e point-to-point communication in Kokkos Comm, to be S
e Programming with non-contiguous 2.0ms | — S S R T— pr— ... = s00ns | — I
data in MPI typically requires a e ] * expanded upon 30| * *
alizat frat 'ng dat 2 s e Added explicit HIP support to Kokkos Comm, to 0
serialization strategy using data € psous|  Erou . E |
repacking or MPI Datatypes a = complement existing CUDA support = 300 s -
o & : 9 2 Z e
e Platform-specifi imization f "o e l———" : e Kokkos Comm has been fully instrumented for use = one| = = :
-specific optimization tor o - ) Kokkos Tool ol L dentifioat f = : g -
rocessors and interconnects il I ‘ Wi OKKOS 1001S, ehabling rapid | en Tfication o © 100ns | g g g
P performance bottlenecks and the ability to trace ) 2 5 Z
presents undue burden to scalable S I S S — ‘ oaram behavior y one — e .
: : I R | | Standard Persistent Partitioned
appllcatIOn developers 2B 16 B 128 B 1 KB 8 KB 64 KB 512 KB 4 MB 32 MB p g e Commueniscixfion Type i o
. Bytes
e Heterogeneous architectures Ack lod ¢

: | Packing Methods Comparison | SERIAL | ng = CKNowie gemen S
COmpllCate data eXC.h.ange and reduce Be_nchmarkl2N0des.1Ra‘nk/N0de | ' / FUture Opportunltles This project wishes to acknowledge the fruitful collaboration
performance-portablllty 2.0ms | Deep Copy Noncontiguous e S i e O /f _ _ _ with our colleagues at Université Paris-Saclay: Gabriel Dos

o Dfep “opy I;\If)ncont'guous e S Datat&f?e b S 2§D / e Enhance Support to include arbltrary Kokkos View Santos, Cédric Chevalier, Hugo Taboada, and Marc
Add - Chall 1.0 ms [+ R L, = tvbes and mdsoan Perache.
ress I n g a e n g es or cache line op‘timization‘; further investigation is required. / yp p
T s e I TR S 4 - e Add new communication space backends (e.qg. Sandia National Laboratories is a multimission laboratory
1Al " 1Al ' ' s i | ’ managed and operated by National Technology &
° Serlallza(;lOn dan(s) dtesetrlzll.zattlin = = S— ’ ' ‘ ' ' ‘ | ' NCCL) to extend Kokkos Comm beyOnd MPIl-based EngindeerinngHolutions ﬁfISandia, LLCI)I, aw?oll;;]ovtljngd
manadaed and apstracted Iinto two = . . . subsidiary of Honeywell International Inc., for the U.S.

g e Communlcatlon for h'gher performance Department of Energy’s National Nuclear Security
Supported types: Deep COpy, and MP| "12s0us o Add SUppOrt for Stream-triggered communication and Administration under contract DE-NA003525.
(D;IaDtStype ation i 64.0 us libfabric to enable optimizations for system-specific Lhi? wolrlfsw,as perljormgdtwith pzrtiagsupfo&fggr&tge |

o . . . . . dalional science rounaation unaer srants an
o orzig]grays:zagr? }((:g[(nkr;]:relr?:t)llcenclls 20w NE————— performance via interface with external libraries 2412182, and the U S... Department of Energy’s National
pp = 5B 1288 5B  oKB SKE  32KB  198KE S12KB 2 MB 8 MB Cabana and RAPI DS Nuclear Security Administration (NNSA) under the

backends (eg ., CUDA, HI P) Data Communicated, in Bytes K;\eadridcti[\)lg_?\fai\%%%%gggdemic Alliance Program (PSAAP-III),
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Introduction

The MPI Alltoallv operation is critical in scientific workloads involving
irregular communication. RMA (Remote Memory Access) promises
asynchronous, one-sided communication, and could out-perform
message-based implementations of collective operations that are
specified in the MPI Standard.

The goal is to design and develop more efficient and faster RMA-based
Alltoallv operations and compare them with traditional MPI_ Alltoallv
against MPI-Advance’s two RMA variants over a range of scalability.

This poster compares the performance of three RMA Alltoallv
implementations: the default MPl implementation of MPI_Alltoallv, MPI-
Advance’s RMA-based Alltoallv with MPI Win fence, and RMA-based
Alltoallv with MPl_Win_lock.

Experiments were conducted on 2, 4, and 8-node configurations using
LLNL’s Dane and Lassen HPC Supercomputers.

Algorithms developed and Compared

* MPI_Alltoallv:

Standard MPI implementation.

* RMA_winfence:

Uses MPI Win fence for synchronization.

* RMA_winlock:

Uses MPI_Win_lock/MPI_Win_unlock for finer-grained control.
Uses MPI Win flush for completions.

Results

* The default MPIl implementation performs better on two nodes, but
the advantage narrows as nodes and processes increase.
* RMA Winlock is consistently slightly faster than RMA_ Winfence.

Insights

* RMA approaches reduce overhead in large
process counts and large messages but not

on fewer nodes.

* Synchronization method matters: winlock

outperforms fence marginally.

Weak Scaling Results

Alltoallv Times on 2 nodes, 8 Processes

7x10°4 1

h
X
—
-
P

Time (seconds, log scale)

Ln
X
i
=
Pl

PMPI_Alltoallv RMA_winfence RMA_ winlock

For all graphs, low bars mean less
time taken and high bars mean more
time taken (in seconds)

Conclusions

* The default MPI1_Alltoallv offers strong
performance on small process counts.

* RMA variants, especially with fine-grained locking,
scale better with more nodes and process count.

* This can be attributed to its flexibility as
compared to MPI Win fence.

* Future work includes Persistent RMA Alltoallv
and OpenSHMEM instead of MPI RMA.

Time (seconds, log scale)

Time (seconds, log scale)

Message size = 33,554,432 bytes

Alltoallv Times on 4 nodes, 16 Processes
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Alltoallv Times on 8 nodes, 32 Processes
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Background

Applications such as deep neural
netwiork training rely on the Allreduce
operation for data communication and use
GPUs for efficient linear algebra
Implementations. In deep neural network
training, the Allreduce Is used to average
the backpropagation gradients across all
GPUs.

It I1s noted, however, that communication
IS dependent on the CPU and network
configuration of the system, even In the
GPUDirect RDMA case. Thus, we
propose to take advantage of growing
core counts on supercomputers, such as
NCSA Delta, with a lane-aware approach

Multi-core

Methods

The optimization of the Allreduce collective operation relies on multiple MPI ranks being launched by the
scheduler per GPU. After the send and receive buffers are allocated per GPU, all ranks associated with each
GPU are given a pointer to the buffer using the CUDA IPC API; a root process per GPU passes the buffer to
cudalpcGetMemHandle to get a handle to broadcast to share the buffer with its on-node ranks, then these
ranks retrieve the pointer with cudalpcOpenMemHandle.

Then, as seen below, the reduction proceeds in a lane-aware manner [1]. A Reduce scatter first divides each
buffer into chunks equal to the number of ranks per node, reducing the chunk size associated with each rank
per GPU on a node. Then, an inter-node Allreduce occurs to ensure all ranks on every node have a completely
reduced chunk of the solution. Finally, the chunks on a node are assembled into the solution with an Allgatherv.
It should be noted that displacements relative to the start of the buffer are used by each GPU’s ranks in order to
ensure each rank stays within bounds of its chunk to allow synchronization to be ignored.

GPU #1

cudalpcGetMemHandle GPU #2

MPI_Bcast
+

Allreduce

MPI_Reduce_scatter

cudalpcOpenMemHandle

GPU #1

o ] GPU #2
[1] to utilize all cores during
communication via CUDA Interprocess
Communication to yield further speedup.
Results Conclusions
16 processes per GPU, max size speedup: 1.29x 1.23x 1.23x
05- 2 nodes A nodes © nodes Speedup for large buffer sizes using 2 to 16 ranks per GPU
—— 1 per GPU 0.5 —— 1 per GPU 054 — 1perGPU ) .
— perce i [y — perry is seen on two, four, and eight nodes of NCSA Delta where
R v 0al o 0a] 3PS P each node has 4 NVIDIA A100 and 64 AMD EPYC CPU

0.3 1

0.3 A

cores. Careful consideration of rank placement evenly

: 2 C throughout all NUMA nodes (one per GPU) provided initial
£ o £ = validation.
01 011 0.1 / Further validation on additional systems such as PSC
0.0 00 - Bridges-2 and Purdue Anvil is needed. Scaling studies will
0.0 0.2 0.4 afm ﬂoatsofs 1.0 1.2 1;;4 0.0 0.2 ﬂjfm . 1.2 1;;4 0.0 0.2 zfm ﬂoatsofs 1.0 1.2 1;;4 be perfOrmEd 1{0) ShOW appIICabIIIty {0 SCientiﬁC and deep
learning problems.
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Introduction
Alltoall

* Critical to matrix operations and machine learning
* Each process sends a portion of its data to every other process
* Multiple algorithms
* Performance depends on data size, process count, architecture,

ANALYZING ALLTOALL ALGORITHMS ON MANY-CORE SYSTEMS

Shannon Kinkead (Sandia National Laboratories, University of New Mexico)
In collaboration with: Amanda Bienz (University of New Mexico)

synchronization requirements, etc.

,\:’—"-‘-’4*-‘&;,. U.S. DEPARTMENT OF

& ENERGY

Process 0 send buffer _ Process 0 send buffer
receive buffer receive buffer

Process 1 send buffer _ Process 1 send buffer
receive buffer receive buffer

—_—>

Process 2 send buffer _ Process 2 send buffer
receive buffer receive buffer

Process p send buffer Process p send buffer
receive buffer receive buffer

Methods

* 8 Alltoall algorithms compared

* System MPI

* Pairwise Exchange (uses MPI send/recv in pairs)

* Nonblocking (uses MPI isend/irecv/waitall)

* Hierarchical (algorithm 2, local comm is all ranks on node)

* Multileader (algorithm 2, local comm is a group within the
node)

* Node Aware (algorithm 3, local comm is all ranks on node)

* Locality Aware (algorithm 3, local com is a group within a
node)

Multileader Locality Aware (multileader, replaces MPI
alltoall with node aware)

* 3 HPC Systems

 Amber (Sandia National Laboratories)
* Dane (Lawrence Livermore National Laboratory)
* Tachi (Sandia National Laboratories)

* 2-32 Nodes

* Message sizes from 4 bytes to 2 kb

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NAOO03525.

* Exchanges all data for processes outside group communicator within the group

communicator

Algorithms
Hierarchical
* Aggregates all data to be sent by each process to leader of local communicator
* Exchanges the data to be sent to other local communicators to group
communicator
* Scatters data from other processes to local communicator
* Data is repacked between each communication step
Algorithm 2: Hierarchical
Input: p {process rank}
L4 {process count }
Saizes Stype: Sbutf {send size, type, and buffer}
Teizes Ttypey Thaf {recv size, type, and buffer}
local _comm {All processes local to region}
ppn, [ {5ize and rank of local comm}
EToup_comm {All processes with equal local rank}
Sbut,, 4. + buffer of size &:4:. -n - ppn
Thut;, .. + buffer of sizZe Teize -7 - ppm
/) Gather to leader
MPI Gather(swus, Ssize -1, -« Sput;  uops - - -, local_comm)
Repack Data
// Alltoall exchange between leaders
MPI_ Alltoall(swut,, ., Ssize " PPTL, - .., Tout,, 4., Tsize * PPTI°. .., EroOUp_comm)
Repack Data
/) Scatter from leader
MPI Scatter(rpue,, ;. .+ Taize " Ty ... Thut, -- ., local_comm)
Hierarchical Alltoall algorithm
Locality-Aware

* Exchanges all data within a region in the local communicator
* Data is repacked between each communication step

Algorithm 3: Locality-Aware

Input: p

TL

Sazize, Stype. Sbuf
Taize;- Tt],rp-a: Touf
local _comm
ppn, |
ETOUp_comm

tmpyyr + buffer of size 5.4

S/ Inter-region Alltoall

MPI  Alltoall{syuy, Sszize - PPN, - -

Repack Data

S/ Intra-region Alltoall

{process rank}

{ process count }

{send size, type, and buffer}
{recv size, type, and buffer}

{ All processes local to region}
{5ize and rank of local comm}

{All processes with equal local rank}

., EMPyut . Taize * PPR. .., grﬂup_cnmm]

MPI  Alltoall{tmpyus, Taize - PPT, - .., Thut, Taize * PPTL. . ., local_comm)

Locality-Aware Alltoall algorithm

References: N. Netterville, K. Fan, S. Kumar, and T. Gilray, “A visual guide to MPI all-to-all,” in 2022 IEEE 29th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). IEEE, 2022, pp. 20-27.
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